

BMHFa-26/23 (2) Ferrite dry pressed, anisotropic -B/(μ0*H) 0.60 0.50 polarization J, flux density B [T] 0.40 0.30 0.20 0.10 0.00 -500.0 -450.0 -400.0 -350.0 -300.0 -250.0 -200.0 -150.0 -100.0 -50.0 0.0

demagnetization field H [kA/m]

Temperature in [°C]:	20.0	-40.0	100.0	150.0	200.0	
magnetic properties						
Remanence 20°C		Br min	0.370	T	3.7	kG
Remainence 20 C		Br nom	0.390	Т	3.9	kG
Coercitivity 20°C		HcB min	226	kA/m	2.8	kOe
		HcB nom	247	kA/m	3.1	kOe
Intrinsic Coercitivity 20°C		HcJ min	230	kA/m	2.9	kOe
		HcJ nom	255	kA/m	3.2	kOe
Maximum Energy Product 20°C		BH max, min	26.4	kJ/m³	3.3	MGOe
		BH max, nom	28	kJ/m³	3.5	MGOe
Reversible Temperature Coefficient ¹⁾		α Br nom	-0.200	%/°C		
		β HcJ nom	0.300	%/°C		
material properties (typical valu	es)					
Max. Operating Temperature 2)		T max	250	°C		
Density		ρ	4.95	g/cm ³		
Permeability 20°C		μr	1.1			
Vickers Hardness			500-600	HV		
Modulus of Elasticity		E	15 - 200	kN/mm ²		
Copressive Strength			600 - 700	N/mm ²		
Flexural Strength			55	N/mm ²		
Expansion Coefficient			-	10 ⁻⁶ /K		
Expansion Coefficient in directio	n of	L	10.0 - 11.0	10 ⁻⁶ /K		
anisotropy		//	12.0 - 13.0	10 ⁻⁶ /K		
Specific Electric Resistance		ρel	1000000000	μΩ [·] m		
Specific Heat Capacity		С	700	J/(kg [·] K)		
Thermal Conductivity		λ	4	W/m ⁻ K		

¹⁾ The shown temperature coefficients are nominal reference values only . They can vary for different temperatures and don't need to be linear.

Note:

The above plotted graphs are idealized and represent theoretical values of the material. Shown are curves according nominal values based on uncoated material samples according to IEC 60404-5. Material and magnetic data represent typical data that may vary due to $product \ shape, \ size \ and \ coating. \ Please \ contact \ Bomatec \ regarding \ specific \ requirements \ for \ your \ application.$

Bomatec | Hofstrasse 1 | Tel. +41 44 872 10 00 | Fax. +41 44 872 10 01 | contact@bomatec.ch | www.bomatec.com

²⁾ The maximum operating temperature is depending on the magnet shape, size and on the specific application.