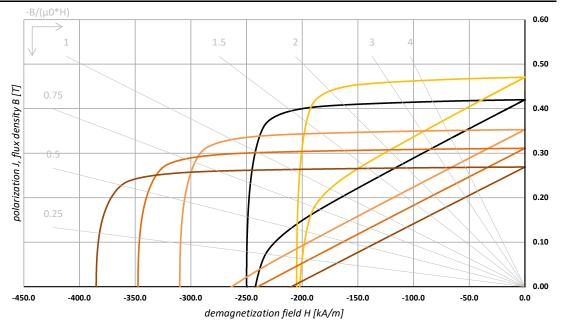
Temperature in [°C]:



BMHFa-32/24 Ferrite wet pressed, anisotropic

200.0

150.0

W/m[·]K

100.0

magnetic properties					
Remanence 20°C	Br min	0.410	T	4.1	kG
	Br nom	0.420	T	4.2	kG
Coercitivity 20°C	HcB min	226	kA/m	2.8	kOe
	HcB nom	238	kA/m	3.0	kOe
Intrinsic Coercitivity 20°C	HcJ min	235	kA/m	3.0	kOe
	HcJ nom	250	kA/m	3.1	kOe
Maximum Energy Product 20°C	BH max, min	32	kJ/m³	4.0	MGOe
	BH max, nom	33.6	kJ/m³	4.2	MGOe
Reversible Temperature Coefficient 1)	α Br nom	-0.200	%/°C		
	β HcJ nom	0.300	%/°C		
material properties (typical values)					
Max. Operating Temperature 2)	T max	250	°C		
Density	ρ	4.95	g/cm ³		
Permeability 20°C	μr	1.1			
Vickers Hardness		500-600	HV		
Modulus of Elasticity	E	15 - 200	kN/mm ²		
Copressive Strength		600 - 700	N/mm ²		
Flexural Strength		55	N/mm ²		
Expansion Coefficient		-	10 ⁻⁶ /K		
Expansion Coefficient in direction of	T	10.0 - 11.0	10 ⁻⁶ /K		
anisotropy	//	12.0 - 13.0	10 ⁻⁶ /K		
Specific Electric Resistance	pel	1000000000	μΩ·m		
Specific Heat Capacity	С	700	J/(kg ⁻ K)		
specific rear capacity			3/ (8)		

-40.0

20.0

Note:

Thermal Conductivity

The above plotted graphs are idealized and represent theoretical values of the material. Shown are curves according nominal values based on uncoated material samples according to IEC 60404-5. Material and magnetic data represent typical data that may vary due to $product \ shape, \ size \ and \ coating. \ Please \ contact \ Bomatec \ regarding \ specific \ requirements \ for \ your \ application.$

Bomatec | Hofstrasse 1 | Tel. +41 44 872 10 00 | Fax. +41 44 872 10 01 | contact@bomatec.ch | www.bomatec.com

¹⁾ The shown temperature coefficients are nominal reference values only . They can vary for different temperatures and don't need to be linear.

²⁾ The maximum operating temperature is depending on the magnet shape, size and on the specific application.