

Remanence 20°C	Br min	0.220	Т	2.2	kG
	Br nom	0.235	T	2.4	kG
Coercitivity 20°C	HcB min	135	kA/m	1.7	kOe
	HcB nom	151	kA/m	1.9	kOe
Intrinsic Coercitivity 20°C	HcJ min	238	kA/m	3.0	kOe
	HcJ nom	258	kA/m	3.2	kOe
Maximum Energy Product 20°C	BH max, min	7.2	kJ/m³	0.9	MG0e
	BH max, nom	8.4	kJ/m³	1.1	MGOe
Reversible Temperature Coefficient 1)	α Br nom	-0.200	%/°C		
	β HcJ nom	0.300	%/°C		
material properties (typical values)					
Max. Operating Temperature 2)	T max	250	°C		
Density	ρ	4.95	g/cm ³		
Permeability 20°C	μr	1.1			
Vickers Hardness		500-600	HV		
Modulus of Elasticity	E	15 - 200	kN/mm ²		
Copressive Strength		600 - 700	N/mm ²		
Flexural Strength		55	N/mm ²		
Expansion Coefficient		9.0 - 10.0	10 ⁻⁶ /K		
Expansion Coefficient in direction of	T	-	10 ⁻⁶ /K		
anisotropy	//	-	10 ⁻⁶ /K		
Specific Electric Resistance	ρel	100000000	μΩ [·] m		
Specific Heat Capacity	С	700	J/(kg [·] K)		
Thermal Conductivity	λ	4	W/m ⁻ K		

¹⁾ The shown temperature coefficients are nominal reference values only . They can vary for different temperatures and don't need to be linear.

Note:

The above plotted graphs are idealized and represent theoretical values of the material. Shown are curves according nominal values based on uncoated material samples according to IEC 60404-5. Material and magnetic data represent typical data that may vary due to product shape, size and coating. Please contact Bomatec regarding specific requirements for your application.

Bomatec | Hofstrasse 1 | Tel. +41 44 872 10 00 | Fax. +41 44 872 10 01 | contact@bomatec.ch | www.bomatec.com

²⁾ The maximum operating temperature is depending on the magnet shape, size and on the specific application.