

-600.0

demagnetization field H [kA/m]

Temperature in [°C]: 20.0 80.0 100.0

-800.0

-1000.0

magnetic properties					
Remanence 20°C	Br min	1.360	Т	13.6	kG
	Br nom	1.400	T	14.0	kG
Coercitivity 20°C	HcB min	795	kA/m	10.0	kOe
	HcB nom	865	kA/m	10.9	kOe
Intrinsic Coercitivity 20°C	HcJ min	835	kA/m	10.5	kOe
	HcJ nom	900	kA/m	11.3	kOe
Maximum Energy Product 20°C	BH max, min	340	kJ/m³	42.7	MG0e
	BH max, nom	380	kJ/m³	47.7	MG0e
Reversible Temperature Coefficient 1)	α Br nom	-0.100 ~ -0.120	%/°C		
	β HcJ nom	-0.64 ~ -0.72	%/°C		
material properties (typical values)					
Max. Operating Temperature ²⁾	T max	100	°C		
Density	ρ	7.55	g/cm ³		
Permeability 20°C	μr	1.05			
Vickers Hardness		750	HV		
Modulus of Elasticity	E	150	kN/mm ²		
Compressive Strength		750	N/mm ²		
Flexural Strength		200	N/mm ²		
Expansion Coefficient		-	10 ⁻⁶ /K		
Expansion Coefficient in direction of	L	-1 ~ 0	10 ⁻⁶ /K		
anisotropy	//	1~2	10 ⁻⁶ /K		
Specific Electric Resistance	pel	1.35	μΩ˙m		
Specific Heat Capacity	С	550	J/(kg ⁻ K)		
Thermal Conductivity	λ	5	\//m ⁻ K		

¹⁾ The shown temperature coefficients are nominal reference values only . They can vary for different temperatures and don't need to be linear.

Note:

-1200.0

The above plotted graphs are idealized and represent theoretical values of the material. Shown are curves according nominal values based on uncoated material samples according to IEC 60404-5. Material and magnetic data represent typical data that may vary due to product shape, size and coating. Please contact Bomatec regarding specific requirements for your application.

Bomatec | Hofstrasse 1 | Tel. +41 44 872 10 00 | Fax. +41 44 872 10 01 | contact@bomatec.ch | www.bomatec.com

0.00

0.0

-200.0

-400.0

 $²⁾ The \ maximum \ operating \ temperature \ is \ depending \ on \ the \ magnet \ shape, \ size \ and \ on \ the \ specific \ application.$