

-3500.0	-3000.0	-2500.0	-2000.0	-1500.0	-1000.0	-500.0	0.0
			demagnetizatio	on field H [kA/m]			
Temperature in [°C]: 20.0		20.0	100.0	120.0	150.0	180.0	200.0
magnetic prop	erties						
Remanence 20°C			Br min	1.130	T	11.3	kG
Remanence 20 C			Br nom	1.170	Т	11.7	kG
Coercitivity 20°C			HcB min	820	kA/m	10.3	kOe
			HcB nom	900	kA/m	11.3	kOe
Intrinsic Coercitivity 20°C			HcJ min	2785	kA/m	35.0	kOe
incrinsic coercitivity 20 C		HcJ nom	2790	kA/m	35.1	kOe	
Maximum Energy Product 20°C			BH max, min	239	kJ/m³	30.0	MG0e
			BH max, nom	263	kJ/m³	33.0	MG0e
Reversible Temperature Coefficient 1)			α Br nom	-0.100 ~ -0.120	%/°C		
Neversible remperature coefficient		Cient	β HcJ nom	-0.44 ~ -0.62	%/°C		
material prope	erties (typical va	lues)					
Max. Operating Temperature 2)			T max	220	°C		
Density		ρ	7.55	g/cm ³			
Permeability 20°C			μr	1.05			
Vickers Hardness			500 - 600	HV			
Modulus of Elasticity		E	150 - 200	kN/mm ²			
Copressive Strength				1000 - 1100	N/mm ²		
Flexural Strength				250	N/mm ²		
Expansion Coefficient				-	10 ⁻⁶ /K		
Expansion Coefficient in direction of		T	-3 - 0	10 ⁻⁶ /K			
anisotropy		//	4 - 9	10 ⁻⁶ /K			
Specific Electric Resistance		ρel	1.2 - 1.6	μΩ [·] m			
Specific Heat Capacity			С	440	J/(kg [·] K)		

¹⁾ The shown temperature coefficients are nominal reference values only . They can vary for different temperatures and don't need to be linear.

Note:

Thermal Conductivity

The above plotted graphs are idealized and represent theoretical values of the material. Shown are curves according nominal values based on uncoated material samples according to IEC 60404-5. Material and magnetic data represent typical data that may vary due to product shape, size and coating. Please contact Bomatec regarding specific requirements for your application.

8.0 - 10.0

W/m[·]K

Bomatec | Hofstrasse 1 | Tel. +41 44 872 10 00 | Fax. +41 44 872 10 01 | contact@bomatec.ch | www.bomatec.com

0.00

²⁾ The maximum operating temperature is depending on the magnet shape, size and on the specific application.