
Temperature in [°C]:

100.0

120.0

150.0

magnetic properties					
Remanence 20°C	Br min	1.140	Т	11.4	kG
	Br nom	1.170	Т	11.7	kG
Coercitivity 20°C	HcB min	844	kA/m	10.6	kOe
	HcB nom	896	kA/m	11.3	kOe
Intrinsic Coercitivity 20°C	HcJ min	1592	kA/m	20.0	kOe
	HcJ nom	1595	kA/m	20.0	kOe
Maximum Energy Product 20°C	BH max, min	239	kJ/m³	30.0	MG0e
	BH max, nom	263	kJ/m³	33.0	MG0e
Reversible Temperature Coefficient ¹⁾	α Br nom	-0.095 ~ -0.115	%/°C		
	β HcJ nom	-0.52 ~ -0.64	%/°C		
material properties (typical values)					
Max. Operating Temperature ²⁾	T max	150	°C		
Density	ρ	7.55	g/cm ³		
Permeability 20°C	μr	1.05			
Vickers Hardness		500 - 600	HV		
Modulus of Elasticity	E	150 - 200	kN/mm ²		
Copressive Strength		1000 - 1100	N/mm ²		
Flexural Strength		250	N/mm ²		
Expansion Coefficient		-	10 ⁻⁶ /K		
Expansion Coefficient in direction of	T	-3 - 0	10 ⁻⁶ /K		
anisotropy	//	4 - 9	10 ⁻⁶ /K		
Specific Electric Resistance	ρel	1.2 - 1.6	μΩ [·] m		
Specific Heat Capacity	С	440	J/(kg ⁻ K)		

80.0

20.0

Note:

Thermal Conductivity

The above plotted graphs are idealized and represent theoretical values of the material. Shown are curves according nominal values based on uncoated material samples according to IEC 60404-5. Material and magnetic data represent typical data that may vary due to product shape, size and coating. Please contact Bomatec regarding specific requirements for your application.

8.0 - 10.0

Bomatec | Hofstrasse 1 | Tel. +41 44 872 10 00 | Fax. +41 44 872 10 01 | contact@bomatec.ch | www.bomatec.com

¹⁾ The shown temperature coefficients are nominal reference values only . They can vary for different temperatures and don't need to be linear.

²⁾ The maximum operating temperature is depending on the magnet shape, size and on the specific application.