

	DI HOH	1.220		12.2	
Coercitivity 20°C	HcB min	860	kA/m	10.8	kOe
	HcB nom	938	kA/m	11.8	kOe
Intrinsic Coercitivity 20°C	HcJ min	1989	kA/m	25.0	kOe
	HcJ nom	1995	kA/m	25.1	kOe
Maximum Energy Product 20°C	BH max, min	263	kJ/m ³	33.0	MG0e
	BH max, nom	279	kJ/m ³	35.1	MG0e
Reversible Temperature Coefficient 1)	α Br nom	-0.095 ~ -0.115	%/°C		
	β HcJ nom	-0.48 ~ -0.63	%/°C		
material properties (typical values)					
Max. Operating Temperature 2)	T max	180	°C		
Density	ρ	7.55	g/cm ³		
Permeability 20°C	μr	1.05			
Vickers Hardness		500 - 600	HV		
Modulus of Elasticity	E	150 - 200	kN/mm ²		
Copressive Strength		1000 - 1100	N/mm ²		
Flexural Strength		250	N/mm ²		
Expansion Coefficient		-	10 ⁻⁶ /K		
Expansion Coefficient in direction of	L	-3 - 0	10 ⁻⁶ /K		
anisotropy	//	4 - 9	10 ⁻⁶ /K		
Specific Electric Resistance	ρel	1.2 - 1.6	μΩ˙m		
Specific Heat Capacity	С	440	J/(kg [·] K)		
Thermal Conductivity	λ	8.0 - 10.0	W/m [·] K		

¹⁾ The shown temperature coefficients are nominal reference values only . They can vary for different temperatures and don't need to be linear.

Note:

The above plotted graphs are idealized and represent theoretical values of the material. Shown are curves according nominal values based on uncoated material samples according to IEC 60404-5. Material and magnetic data represent typical data that may vary due to product shape, size and coating. Please contact Bomatec regarding specific requirements for your application.

Bomatec | Hofstrasse 1 | Tel. +41 44 872 10 00 | Fax. +41 44 872 10 01 | contact@bomatec.ch | www.bomatec.com

²⁾ The maximum operating temperature is depending on the magnet shape, size and on the specific application.