| Temperature in [°C]: | 20.0 | 100.0 | 120.0 | 150.0 | 180.0 | 200.0 | |---|--------|-------------|-----------------|-----------------------|-------|-------| | magnetic properties | | | | | | | | Remanence 20°C | | Br min | 1.220 | Т | 12.2 | kG | | Remailence 20 C | | Br nom | 1.260 | T | 12.6 | kG | | Coercitivity 20°C | | HcB min | 921 | kA/m | 11.6 | kOe | | | | HcB nom | 969 | kA/m | 12.2 | kOe | | Intrinsic Coercitivity 20°C | | HcJ min | 2387 | kA/m | 30.0 | kOe | | | | HcJ nom | 2390 | kA/m | 30.0 | kOe | | Maximum Energy Product 20°C | | BH max, min | 279 | kJ/m³ | 35.1 | MGOe | | | | BH max, nom | 303 | kJ/m³ | 38.1 | MGOe | | Reversible Temperature Coefficient 1) | | α Br nom | -0.095 ~ -0.115 | %/°C | | | | | | β HcJ nom | -0.45 ~ -0.59 | %/°C | | | | material properties (typical va | lues) | | | | | | | Max. Operating Temperature ² |) | T max | 200 | °C | | | | Density | | ρ | 7.55 | g/cm ³ | | | | Permeability 20°C | | μr | 1.05 | | | | | Vickers Hardness | | | 500 - 600 | HV | | | | Modulus of Elasticity | | E | 150 - 200 | kN/mm ² | | | | Copressive Strength | | | 1000 - 1100 | N/mm ² | | | | Flexural Strength | | | 250 | N/mm ² | | | | Expansion Coefficient | | | - | 10 ⁻⁶ /K | | | | Expansion Coefficient in directi | ion of | | -3 - 0 | 10 ⁻⁶ /K | | | | anisotropy | | // | 4 - 9 | 10 ⁻⁶ /K | | | | Specific Electric Resistance | | ρel | 1.2 - 1.6 | μΩ [·] m | | | | Specific Heat Capacity | | С | 440 | J/(kg [·] K) | | | | Thermal Conductivity | | λ | 8.0 - 10.0 | W/m [·] K | | | ¹⁾ The shown temperature coefficients are nominal reference values only . They can vary for different temperatures and don't need to be linear. Note: The above plotted graphs are idealized and represent theoretical values of the material. Shown are curves according nominal values based on uncoated material samples according to IEC 60404-5. Material and magnetic data represent typical data that may vary due to product shape, size and coating. Please contact Bomatec regarding specific requirements for your application. Bomatec | Hofstrasse 1 | Tel. +41 44 872 10 00 | Fax. +41 44 872 10 01 | contact@bomatec.ch | www.bomatec.com ²⁾ The maximum operating temperature is depending on the magnet shape, size and on the specific application.