

NdFeB sintered, corrosion stable

Temperature in [°C]:	20.0	80.0	100.0	120.0	150.0	
magnetic properties						
Remanence 20°C		Br min	1.290	Т	12.9	kG
Kemanence zu C		Br nom	1.330	T	13.3	kG
Coercitivity 20°C		HcB min	976	kA/m	12.3	kOe
		HcB nom	1018	kA/m	12.8	kOe
Intrinsic Coercitivity 20°C		HcJ min	1592	kA/m	20.0	kOe
		HcJ nom	1595	kA/m	20.0	kOe
Maximum Energy Product 20°C		BH max, min	318	kJ/m³	39.9	MG0e
		BH max, nom	334	kJ/m³	42.0	MG0e
Reversible Temperature Coefficient ¹⁾		α Br nom	-0.100 ~ -0.120	%/°C		
		β HcJ nom	-0.55 ~ -0.66	%/°C		
material properties (typical	values)					
Max. Operating Temperature ²⁾		T max	150	°C		
Density		ρ	7.55	g/cm ³		
Permeability 20°C		μr	1.05			
Vickers Hardness			500 - 600	HV		
Modulus of Elasticity		E	150 - 200	kN/mm ²		
Compressive Strength			1000 - 1100	N/mm ²		
Flexural Strength			250	N/mm ²		
Expansion Coefficient			-	10 ⁻⁶ /K		
Expansion Coefficient in direction of		1	-3 - 0	10 ⁻⁶ /K		
anisotropy		//	4 - 9	10 ⁻⁶ /K		
Specific Electric Resistance		ρel	1.2 - 1.6	μΩ [·] m		
Specific Heat Capacity		c	440	J/(kg ⁻ K)		
Thermal Conductivity		λ	8.0 - 10.0	W/m [·] K		

 $¹⁾ The shown temperature coefficients are nominal \ reference values only \ . They can vary for different temperatures and don't need to be linear.$

Note:

The above plotted graphs are idealized and represent theoretical values of the material. Shown are curves according nominal values based on uncoated material samples according to IEC 60404-5. Material and magnetic data represent typical data that may vary due to product shape, size and coating. Please contact Bomatec regarding specific requirements for your application.

Bomatec | Hofstrasse 1 | Tel. +41 44 872 10 00 | Fax. +41 44 872 10 01 | contact@bomatec.ch | www.bomatec.com

²⁾ The maximum operating temperature is depending on the magnet shape, size and on the specific application.