

Temperature in [°C]:	20.0	80.0	100.0	120.0	150.0	180.0
magnetic properties						
Remanance 20°C		Br min	1.350	Т	13.5	kG
Remanence 20°C		Br nom	1.380	Т	13.8	kG
Coercitivity 20°C		HcB min	1022	kA/m	12.8	kOe
Coercitivity 20 C		HcB nom	1056	kA/m	13.3	kOe
Intrinsic Coercitivity 20°C		HcJ min	1989	kA/m	25.0	kOe
		HcJ nom	1995	kA/m	25.1	kOe
Maximum Energy Product 20°C		BH max, min	350	kJ/m³	44.0	MG0e
		BH max, nom	366	kJ/m³	46.0	MG0e
Reversible Temperature Coefficient ¹⁾		α Br nom	-0.095 ~ -0.115	%/°C		
		β HcJ nom	-0.48 ~ -0.63	%/°C		
material properties (typical v	alues)					
Max. Operating Temperature	2)	T max	180	°C		
Density		ρ	7.55	g/cm ³		
Permeability 20°C		μr	1.05			
Vickers Hardness			500 - 600	HV		
Modulus of Elasticity		E	150 - 200	kN/mm ²		
Copressive Strength			1000 - 1100	N/mm²		
Flexural Strength			250	N/mm²		
Expansion Coefficient			-	10 ⁻⁶ /K		
Expansion Coefficient in direc	ction of		-3 - 0	10 ⁻⁶ /K		
anisotropy		//	4 - 9	10 ⁻⁶ /K		
Specific Electric Resistance		pel	1.2 - 1.6	μΩ [·] m		
Specific Heat Capacity		С	440	J/(kg ⁻ K)		
Thermal Conductivity		λ	8.0 - 10.0	W/m [·] K		

¹⁾ The shown temperature coefficients are nominal reference values only . They can vary for different temperatures and don't need to be linear.

Note:

The above plotted graphs are idealized and represent theoretical values of the material. Shown are curves according nominal values based on uncoated material samples according to IEC 60404-5. Material and magnetic data represent typical data that may vary due to product shape, size and coating. Please contact Bomatec regarding specific requirements for your application.

Bomatec | Hofstrasse 1 | Tel. +41 44 872 10 00 | Fax. +41 44 872 10 01 | contact@bomatec.ch | www.bomatec.com

²⁾ The maximum operating temperature is depending on the magnet shape, size and on the specific application.