

BMN-48SH/S (GBD) NdFeB sintered, corrosion stable -B/(μ0*H) 1.80 1.40 polarization J, flux density B [T] 1.20 1.00 0.80 0.60 0.40 0.20 0.00 -2000.0 -1200.0 -1800.0 -1600.0 -1400.0 -1000.0 -800.0 -600.0 -400.0 -200.0 0.0

demagnetization field H [kA/m]

Temperature in [°C]:	20.0	80.0	100.0	120.0	150.0	
magnetic properties						
Remanence 20°C		Br min	1.370	Т	13.7	kG
		Br nom	1.410	Т	14.1	kG
Coercitivity 20°C		HcB min	1024	kA/m	12.9	kOe
		HcB nom	1074	kA/m	13.5	kOe
Intrinsic Coercitivity 20°C		HcJ min	1592	kA/m	20.0	kOe
		HcJ nom	1595	kA/m	20.0	kOe
Maximum Energy Product 20°C		BH max, min	358	kJ/m³	45.0	MGOe
		BH max, nom	382	kJ/m³	48.0	MGOe
Reversible Temperature Coefficient 1)		α Br nom	-0.100 ~ -0.120	%/°C		
		β HcJ nom	-0.55 ~ -0.66	%/°C		
material properties (typical	values)					
Max. Operating Temperature	e ²⁾	T max	150	°C		
Density		ρ	7.55	g/cm ³		
Permeability 20°C		μr	1.05			
Vickers Hardness			500 - 600	HV		
Modulus of Elasticity		E	150 - 200	kN/mm ²		
Copressive Strength			1000 - 1100	N/mm ²		
Flexural Strength			250	N/mm ²		
Expansion Coefficient			-	10 ⁻⁶ /K		
Expansion Coefficient in dire	ction of		-3 - 0	10 ⁻⁶ /K		
anisotropy		//	4 - 9	10 ⁻⁶ /K		
Specific Electric Resistance		ρel	1.2 - 1.6	μΩ [·] m		
Specific Heat Capacity		С	440	J/(kg ⁻ K)		
Thermal Conductivity		λ	8.0 - 10.0	W/m ⁻ K		

¹⁾ The shown temperature coefficients are nominal reference values only . They can vary for different temperatures and don't need to be linear.

Note:

The above plotted graphs are idealized and represent theoretical values of the material. Shown are curves according nominal values based on uncoated material samples according to IEC 60404-5. Material and magnetic data represent typical data that may vary due to $product \ shape, \ size \ and \ coating. \ Please \ contact \ Bomatec \ regarding \ specific \ requirements \ for \ your \ application.$

Bomatec | Hofstrasse 1 | Tel. +41 44 872 10 00 | Fax. +41 44 872 10 01 | contact@bomatec.ch | www.bomatec.com

²⁾ The maximum operating temperature is depending on the magnet shape, size and on the specific application.