

demagnetization field H [kA/m]

Temperature in [°C]:	20.0	100.0	120.0	150.0	180.0	200.0
magnetic properties						
Remanence 20°C		Br min	1.390	T	13.9	kG
Remanence 20 C		Br nom	1.430	Т	14.3	kG
Coercitivity 20°C		HcB min	1064	kA/m	13.4	kOe
		HcB nom	1094	kA/m	13.7	kOe
Intrinsic Coercitivity 20°C		HcJ min	2387	kA/m	30.0	kOe
		HcJ nom	2390	kA/m	30.0	kOe
Maximum Energy Product 20°C		BH max, min	377	kJ/m³	47.4	MGOe
		BH max, nom	399	kJ/m³	50.1	MGOe
Reversible Temperature Coefficient ¹⁾		α Br nom	-0.100 ~ -0.120	%/°C		
		β HcJ nom	-0.47 ~ -0.62	%/°C		
material properties (typical va	lues)					
Max. Operating Temperature	2)	T max	200	°C		
Density		ρ	7.55	g/cm ³		
Permeability 20°C		μr	1.05			
Vickers Hardness			500 - 600	HV		
Modulus of Elasticity		E	150 - 200	kN/mm ²		
Copressive Strength			1000 - 1100	N/mm ²		
Flexural Strength			250	N/mm ²		
Expansion Coefficient			-	10 ⁻⁶ /K		
Expansion Coefficient in direct	ion of	上	-3 - 0	10 ⁻⁶ /K		
anisotropy		//	4 - 9	10 ⁻⁶ /K		
Specific Electric Resistance		ρel	1.2 - 1.6	μΩ [·] m		
Specific Heat Capacity		С	440	J/(kg [·] K)		
Thermal Conductivity		λ	8.0 - 10.0	W/m [·] K		

¹⁾ The shown temperature coefficients are nominal reference values only . They can vary for different temperatures and don't need to be linear.

Note:

The above plotted graphs are idealized and represent theoretical values of the material. Shown are curves according nominal values based on uncoated material samples according to IEC 60404-5. Material and magnetic data represent typical data that may vary due to $product \ shape, \ size \ and \ coating. \ Please \ contact \ Bomatec \ regarding \ specific \ requirements \ for \ your \ application.$

Bomatec | Hofstrasse 1 | Tel. +41 44 872 10 00 | Fax. +41 44 872 10 01 | contact@bomatec.ch | www.bomatec.com

²⁾ The maximum operating temperature is depending on the magnet shape, size and on the specific application.