

Temperature in [°C]:

magnetic properties					
Remanence 20°C	Br min	1.390	T	13.9	kG
	Br nom	1.430	Т	14.3	kG
Coercitivity 20°C	HcB min	1053	kA/m	13.2	kOe
	HcB nom	1084	kA/m	13.6	kOe
Intrinsic Coercitivity 20°C	HcJ min	1353	kA/m	17.0	kOe
	HcJ nom	1360	kA/m	17.1	kOe
Maximum Energy Product 20°C	BH max, min	377	kJ/m³	47.4	MGOe
	BH max, nom	399	kJ/m ³	50.1	MGOe
Reversible Temperature Coefficient 1)	α Br nom	-0.100 ~ -0.120	%/°C		
	β HcJ nom	-0.58~ -0.66	%/°C		
motorial proportion (typical values)					

100.0

120.0

80.0

material properties (typical values)				
Max. Operating Temperature 2)	T max	120	°C	
Density	ρ	7.55	g/cm ³	
Permeability 20°C	μr	1.05		
Vickers Hardness		500 - 600	HV	
Modulus of Elasticity	E	150 - 200	kN/mm ²	
Copressive Strength		1000 - 1100	N/mm ²	
Flexural Strength		250	N/mm ²	
Expansion Coefficient		-	10 ⁻⁶ /K	
Expansion Coefficient in direction of		-3 - 0	10 ⁻⁶ /K	
anisotropy	//	4 - 9	10 ⁻⁶ /K	
Specific Electric Resistance	ρel	1.2 - 1.6	μΩ·m	
Specific Heat Capacity	С	440	J/(kg [·] K)	
Thermal Conductivity	λ	8.0 - 10.0	W/m ⁻ K	

¹⁾ The shown temperature coefficients are nominal reference values only . They can vary for different temperatures and don't need to be linear.

20.0

Note: The above plotted graphs are idealized and represent theoretical values of the material. Shown are curves according nominal values based on uncoated material samples according to IEC 60404-5. Material and magnetic data represent typical data that may vary due to product shape, size and coating. Please contact Bomatec regarding specific requirements for your application.

Bomatec | Hofstrasse 1 | Tel. +41 44 872 10 00 | Fax. +41 44 872 10 01 | contact@bomatec.ch | www.bomatec.com

²⁾ The maximum operating temperature is depending on the magnet shape, size and on the specific application.