

demagnetization field H [kA/m]

Temperature in [°C]: 20.0 80.0 100.0 120.0 150.0

Temperature in [°C]:	20.0	80.0	100.0	120.0	150.0	
magnetic properties						
Remanence 20°C		Br min	0.570	Т	5.7	kG
Remanence 20 C		Br nom	0.640	Т	6.4	kG
Coercitivity 20°C		HcB min	370	kA/m	4.6	kOe
Coefficiently 20 C		HcB nom	440	kA/m	5.5	kOe
Intrinsic Coercitivity 20°C		HcJ min	1040	kA/m	13.1	kOe
mumble coercitivity 20 C		HcJ nom	1200	kA/m	15.1	kOe
Maximum Energy Product 20°C		BH max, min	55	kJ/m³	6.9	MGOe
		BH max, nom	68	kJ/m³	8.5	MGOe
Reversible Temperature Coefficient ¹⁾		α Br nom	-0.110 ~ -0.130	%/°C		
		β HcJ nom	-0.38 ~ -0.42	%/°C		
material properties (typical values)						
Max. Operating Temperature 2)		T max	160	°C		
Density		ρ	5.95	g/cm ³		
Permeability 20°C		μr	1.20 - 1.30			
Vickers Hardness			35 - 45	HV		
Modulus of Elasticity		E	8 - 16	kN/mm ²		
Copressive Strength			-	N/mm ²		
Flexural Strength			50-100	N/mm ²		
Expansion Coefficient			10.0 - 30.0	10 ⁻⁶ /K		
Expansion Coefficient in direction o	f	<u></u>	-	10 ⁻⁶ /K		
anisotropy		//	-	10 ⁻⁶ /K		
Specific Electric Resistance		ρel	15 - 50	μΩ˙m		
Specific Heat Capacity		С	-	J/(kg [·] K)		
Thermal Conductivity		λ	2	W/m ⁻ K		

¹⁾ The shown temperature coefficients are nominal reference values only . They can vary for different temperatures and don't need to be linear.

Note:

The above plotted graphs are idealized and represent theoretical values of the material. Shown are curves according nominal values based on uncoated material samples according to IEC 60404-5. Material and magnetic data represent typical data that may vary due to product shape, size and coating. Please contact Bomatec regarding specific requirements for your application.

Bomatec | Hofstrasse 1 | Tel. +41 44 872 10 00 | Fax. +41 44 872 10 01 | contact@bomatec.ch | www.bomatec.com

²⁾ The maximum operating temperature is depending on the magnet shape, size and on the specific application.