

NdFeB bonded, isotropic (EP)

Temperature in [°C]:	20.0	80.0	100.0	120.0	150.0

magnetic properties					
Remanence 20°C	Br min	0.650	Т	6.5	kG
Remanence 20 C	Br nom	0.700	Т	7.0	kG
Coercitivity 20°C	HcB min	380	kA/m	4.8	kOe
	HcB nom	460	kA/m	5.8	kOe
Intrincia Coorcitivity 20°C	HcJ min	640	kA/m	8.0	kOe
Intrinsic Coercitivity 20°C	HcJ nom	720	kA/m	9.0	kOe
Maximum Energy Product 20°C	BH max, min	70	kJ/m³	8.8	MGOe
Maximum Energy Product 20 C	BH max, nom	81	kJ/m³	10.2	MGOe
Davidus Harris and Lucian Confficient 1)	α Br nom	-0.100 ~ -0.130	%/°C		
Reversible Temperature Coefficient 1)	β HcJ nom	-0.35 ~ -0.40	%/°C		
material properties (typical values)					
Max. Operating Temperature 2)	T max	160	°C		
Density	ρ	5.95	g/cm ³		
Permeability 20°C	μr	1.20 - 1.30			
Vickers Hardness		35 - 45	HV		
Modulus of Elasticity	E	8 - 16	kN/mm ²		
Copressive Strength		-	N/mm ²		
Flexural Strength		50-100	N/mm ²		
Expansion Coefficient		10.0 - 30.0	10 ⁻⁶ /K		
Expansion Coefficient in direction of	L	-	10 ⁻⁶ /K		
anisotropy	//	-	10 ⁻⁶ /K		
Specific Electric Resistance	ρel	15 - 50	μΩ [·] m		
Specific Heat Capacity	С	-	J/(kg ⁻ K)		
Thermal Conductivity	λ	2	W/m [·] K		

 $¹⁾ The shown temperature coefficients are nominal \ reference values only \ . They can vary for different temperatures and don't need to be linear.$

Note:

The above plotted graphs are idealized and represent theoretical values of the material. Shown are curves according nominal values based on uncoated material samples according to IEC 60404-5. Material and magnetic data represent typical data that may vary due to $product\ shape,\ size\ and\ coating.\ Please\ contact\ Bomatec\ regarding\ specific\ requirements\ for\ your\ application.$

Bomatec | Hofstrasse 1 | Tel. +41 44 872 10 00 | Fax. +41 44 872 10 01 | contact@bomatec.ch | www.bomatec.com

²⁾ The maximum operating temperature is depending on the magnet shape, size and on the specific application.