



## NdFeB bonded, isotropic (EP)



| Temperature in [°C]: | 20.0 | 80.0 | 100.0 | 120.0 | 150.0 |
|----------------------|------|------|-------|-------|-------|
|----------------------|------|------|-------|-------|-------|

| magnetic properties                   |             |                 |                       |      |      |
|---------------------------------------|-------------|-----------------|-----------------------|------|------|
| Remanence 20°C                        | Br min      | 0.690           | T                     | 6.9  | kG   |
| Remanence 20 C                        | Br nom      | 0.740           | Т                     | 7.4  | kG   |
| Coercitivity 20°C                     | HcB min     | 430             | kA/m                  | 5.4  | kOe  |
|                                       | HcB nom     | 480             | kA/m                  | 6.0  | kOe  |
| Intrinsic Coercitivity 20°C           | HcJ min     | 680             | kA/m                  | 8.5  | kOe  |
|                                       | HcJ nom     | 760             | kA/m                  | 9.6  | kOe  |
| Maximum Energy Product 20°C           | BH max, min | 76              | kJ/m³                 | 9.5  | MG0e |
| iviaxiiiluiii Ellergy Product 20 C    | BH max, nom | 88              | kJ/m³                 | 11.1 | MGOe |
| Devenible Terrorenture Coefficient 1) | α Br nom    | -0.100 ~ -0.130 | %/°C                  |      |      |
| Reversible Temperature Coefficient 1) | β HcJ nom   | -0.35 ~ -0.40   | %/°C                  |      |      |
| material properties (typical values)  |             |                 |                       |      |      |
| Max. Operating Temperature 2)         | T max       | 160             | °C                    |      |      |
| Density                               | ρ           | 6.15            | g/cm <sup>3</sup>     |      |      |
| Permeability 20°C                     | μr          | 1.25 - 1.35     |                       |      |      |
| Vickers Hardness                      |             | 35 - 45         | HV                    |      |      |
| Modulus of Elasticity                 | E           | 8 - 16          | kN/mm <sup>2</sup>    |      |      |
| Copressive Strength                   |             | -               | N/mm <sup>2</sup>     |      |      |
| Flexural Strength                     |             | 50-100          | N/mm <sup>2</sup>     |      |      |
| Expansion Coefficient                 |             | 10.0 - 30.0     | 10 <sup>-6</sup> /K   |      |      |
| Expansion Coefficient in direction of | 1           | -               | 10 <sup>-6</sup> /K   |      |      |
| anisotropy                            | //          | -               | 10 <sup>-6</sup> /K   |      |      |
| Specific Electric Resistance          | ρel         | 15 - 50         | μΩ˙m                  |      |      |
| Specific Heat Capacity                | С           | -               | J/(kg <sup>-</sup> K) |      |      |
| Thermal Conductivity                  | λ           | 2               | W/m <sup>-</sup> K    |      |      |

<sup>1)</sup> The shown temperature coefficients are nominal reference values only . They can vary for different temperatures and don't need to be linear.

Note:

The above plotted graphs are idealized and represent theoretical values of the material. Shown are curves according nominal values based on uncoated material samples according to IEC 60404-5. Material and magnetic data represent typical data that may vary due to product shape, size and coating. Please contact Bomatec regarding specific requirements for your application.

Bomatec | Hofstrasse 1 | Tel. +41 44 872 10 00 | Fax. +41 44 872 10 01 | contact@bomatec.ch | www.bomatec.com

<sup>2)</sup> The maximum operating temperature is depending on the magnet shape, size and on the specific application.